1,899 research outputs found

    A polynomial rooting approach for synchronization in multipath channels using antenna arrays

    Get PDF
    The estimation of the delay of a known training signal received by an antenna array in a multipath channel is addressed. The effect of the co-channel interference is taken into account by including a term with unknown spatial correlation. The channel is modeled as an unstructured FIR filter. The exact maximum likelihood (ML) solution for this problem is derived, but it does not have a simple dependence on the delay. An approximate estimator that is asymptotically equivalent to the exact one is presented. Using an appropriate reparameterization, it is shown that the delay estimate is obtained by rooting a low-order polynomial, which may be of interest in applications where fast feedforward synchronization is needed.Peer ReviewedPostprint (published version

    A reduced-complexity and asymptotically efficient time-delay estimator

    Get PDF
    This paper considers the problem of estimating the time delays of multiple replicas of a known signal received by an array of antennas. Under the assumptions that the noise and co-channel interference (CCI) are spatially colored Gaussian processes and that the spatial signatures are arbitrary, the maximum likelihood (ML) solution to the general time delay estimation problem is derived. The resulting criterion for the delays yields consistent and asymptotically efficient estimates. However, the criterion is highly non-linear, and not conducive to simple minimization procedures. We propose a new cost function that is shown to provide asymptotically efficient delay estimates. We also outline a heuristic way of deriving this cost function. The form of this new estimator lends itself to minimization by the computationally attractive iterative quadratic maximum likelihood (IQML) algorithm. The existence of simple yet accurate initialization schemes based on ESPRIT and identity weightings makes the approach viable for practical implementation.Peer ReviewedPostprint (published version

    Channel Estimation and Uplink Achievable Rates in One-Bit Massive MIMO Systems

    Full text link
    This paper considers channel estimation and achievable rates for the uplink of a massive multiple-input multiple-output (MIMO) system where the base station is equipped with one-bit analog-to-digital converters (ADCs). By rewriting the nonlinear one-bit quantization using a linear expression, we first derive a simple and insightful expression for the linear minimum mean-square-error (LMMSE) channel estimator. Then employing this channel estimator, we derive a closed-form expression for the lower bound of the achievable rate for the maximum ratio combiner (MRC) receiver. Numerical results are presented to verify our analysis and show that our proposed LMMSE channel estimator outperforms the near maximum likelihood (nML) estimator proposed previously.Comment: 5 pages, 2 figures, the Ninth IEEE Sensor Array and Multichannel Signal Processing Worksho

    No Entire Inner Functions

    Get PDF
    We study generalized inner functions on a large family of ReproducingKernel Hilbert Spaces. We show that the only inner functions whichare entire are the normalized monomials
    • …
    corecore